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P redictive approaches to gradient retention based on analyte
structural descriptors from calculation chemistry

*Tomasz Ba¸czek, Roman Kaliszan
´ ´Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland

Abstract

Quantitative structure retention relationships (QSRRs) were applied to predict reversed-phase HPLC gradient retention.
The performance of the recently recommended QSRR models was compared. One tested model is based on structural
descriptors from molecular modeling. To quantitatively characterize the structure of analytes the following three structural
descriptors are employed: total dipole moment, electron excess charge of the most negatively charged atom and
water-accessible molecular surface area. Reliability of the resulting gradient retention time predictions was compared to that
provided by the models relating retention to the theoretically calculated logarithm ofn-octanol–water partition coefficient,
log P. The requested values of logP were obtained using three commercially available softwares. The predicted retention
parameters were compared for a series of structurally diversified small molecular mass analytes. It has been demonstrated
that the retention predictions from both the molecular modeling descriptors-based and the logP-based QSRR are
characterized by similar errors. It has been hypothesized that the optimization of separation based on QSRRs and the linear
solvent strength theory might be of practical analytical value.
   2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction under consideration encoding specific information on
their individual property aspects, on the other hand.

An a priori prediction of properties, either bio- Chromatography may obviously be an excellent
logical or physicochemical, of chemical substances source of quantitatively comparable property mea-
from their structural formulas is a fundamental, sures that can conveniently be collected for repre-
however still quite unrealistic (at least in quantitative sentative series of analyte structures. Therefore,
terms), task of chemistry. Starting conditions for quantitative structure–retention relationships
deriving quantitative structure–property relation- (QSRRs) have, since their introduction in the late
ships, allowing for reliable property predictions, are 1970s, been considered a model approach to estab-
determined by the accurate, reproducible property lish strategy of property predictions, to test the
measures on one hand, and the exact, unambiguously performance of various chemometric data processing
defined structural features of the chemical entities methods as well as property predictor potency of

theoretically unlimited number of structural descrip-
tors offered by computational chemistry [1–3].*Corresponding author. Tel.:148-58-349-3260; fax:148-58-
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comparison of retention properties of diverse HPLC differentiate the analytes with regards to their so-
columns, of the general QSRR model employing the called polarity. Our comparative study [18] showed
following analyte descriptors: (i) total dipole mo- that the Galushko approach is quite approximate,
ment, m ; (ii) electron excess charge of the most however.
negatively charged atom,d ; (iii) water-accessible In reversed-phase liquid chromatography retentionMin

molecular surface area,A . The following phys- parameters are since the time of Martin and SyngeWAS

ical meaning of individual descriptors is assumed:m [19] known to correlate with partition coefficients.
accounts for the dipole–dipole and dipole-induced The reference liquid–liquid partition parameter is the
dipole attractive interactions of the analyte with the logarithm ofn-octanol–water partition coefficient,
components of the competing mobile and stationary logP [20]. Values of logP can be calculated from
phase;d reflects ability of analytes to participate structural formulas employing commercially avail-min

in polar interactions with the phases of the charge- able softwares. Next, for retention prediction a
transfer and hydrogen-bonding type;A describes simple regression equation can be applied:WAS

the strength of dispersive interactions (London–Hall retention parameter5 k 1 k log P (2)1 2interactions) of the analyte with the molecules form-
ing the chromatographic phases. The general QSRR wherek and k are regression coefficients.1 2

equation based on these molecular modeling-derived Using Eqs. (1) and (2) retention parameters for a
descriptors has the form: structurally representative and sufficiently large (for

meaningful statistics) model series of analytes chro-
retention parameter5 k 1 k m 1 k d 1 k A matographed in a given HPLC system can be1 2 3 Min 4 WAS

described. A model series of 18 analytes was previ-(1)
ously designed to compare retention properties of
various stationary phase materials [5,6]. It was laterwhere retention parameter may be either isocratic log
found [7] that the model series could be shortened tok or gradient retention time,t , and k –k arew R 1 4

15 compounds without meaningful loss of statisticalregression coefficients.
significance of the resulting QSRRs.Several other QSRR models have been reported in

The pH of the buffers used in experiments wasthe literature. Best known is the model based on
chosen to minimize the dissociation of the analytes.solvatochromic or LSERs (linear solvation energy
Otherwise pH would had to be considered as anrelationships) analyte structure descriptors assumed
additional variable affecting gradient retention time.to account for differences among the analytes regard-
Predictions of retention time would then requireing their ability to take part in intermolecular interac-
knowledge of pK of analytes [21,22].tions with the components of a chromatographic a

The values of gradient retention times and of thesystem of the following types: cavity formation,
structural descriptors of the analytes used to derivepolarizability, hydrogen bond donation, hydrogen
QSRR equations characterizing the HPLC systembond acceptance and dispersive attractions [8–14].
studied are presented in Table 1.The model shows good retention prediction potency

The aim of this work was to check and comparebut requires empirically determined structural param-
the goodness of predictions based on Eqs. (1) andeters that obviously are not available for all the
(2). Structural descriptors used in Eq. (1) werepossible analytes. As a matter of fact, Wilson et al.
derived by the standard molecular modeling. The log[15] have recently elaborated a LSER-based pro-
P values used in Eq. (2) were calculated with use ofcedure of retention prediction based on limited
three softwares:ACD (Advanced Chemistry Develop-amount of experimental measurements. The ap-
ment, Toronto, Canada),HYPERCHEM with the exten-proach, however comprehensive, appears rather com-
sion CHEMPLUS (Hypercube, Waterloo, Canada) andplex for routine retention prediction purposes.
CLOGP(BioByte, Claremont, CA, USA). By means ofAn a priori prediction of retention from structure
the ACD software it was possible to predict directlyof analyte offers a model proposed by Galushko et
the gradient retention times of analytes based onal. [16,17]. The model employs a term accounting
their log P values. On the other hand, the logP datafor dispersive interactions and a term supposed to
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Table 1
Experimental gradient retention times,t , along with the total dipole moment,m, electron excess charge of the most negatively chargedR exp

atom,d , water-accessible molecular surface area,A , all from molecular modeling and the logP values calculated with the use ofACD,Min WAS

HYPERCHEM andCLOGP computer programs, for the set of analytes employed to derive QSRR models. Linear gradient of methanol 10–90% at
t 510 minG

No. Analyte t m d A log PR exp Min WAS

2˚(min) (D) (electron) (A ) ACD HYPERCHEM CLOGP

1 Benzamide 6.84 3.583 20.4333 293.46 0.74 1.05 0.65
2 4-Cyanophenol 7.93 3.311 20.2440 290.90 1.60 1.80 1.60
3 Indazole 9.05 1.547 20.2034 284.44 1.82 1.14 1.63
4 Benzonitrile 9.01 3.336 20.1349 279.14 1.65 2.08 1.57
5 Indole 9.77 1.883 20.2194 292.38 2.14 1.82 2.13
6 2-Naphthol 10.35 1.460 20.2518 323.16 2.71 2.76 2.65
7 Anisole 10.62 1.249 20.2116 288.94 2.13 1.79 2.06
8 Benzene 10.69 0.000 20.1301 245.21 2.22 2.05 2.14
9 1-Naphthylacetonitrile 10.60 3.031 20.1381 364.26 2.68 3.34 2.74

10 Benzyl chloride 11.12 1.494 20.1279 296.17 2.49 2.66 2.70
11 Naphthalene 12.14 0.000 20.1277 311.58 3.45 3.05 3.32
12 Biphenyl 12.65 0.000 20.1315 358.08 3.98 3.73 4.03
13 Phenanthrene 13.12 0.020 20.1279 374.73 4.68 4.05 4.95
14 Pyrene 13.61 0.000 20.1273 392.41 5.17 4.37 4.49
15 2,29-Dinaphthyl ether 13.79 1.463 20.1606 510.36 6.67 5.48 6.59

provided by HYPERCHEM and CLOGP were used to suppression of dissociation of individual analytes.
derive model QSRR equations which served next to The buffer was prepared by dissolving tris(hydroxy-
calculate t based on the linear solvent strength methyl)aminomethane (P.C. Odczynniki, Gliwice,R

(LSS) relationships. Retention predictions based on Poland) in water and adjusting the pH with 1M HCl
the structural descriptors from molecular modeling (Fluka, Buchs, Switzerland). The pH of the buffer
(total dipole moment, electron excess charge of the was measured at 218C before mixing with the
most negatively charged atom and water-accessible organic modifiers. The pH measurements were done
molecular surface area) and on the three kinds of log with an HI 9017 pH meter (Hanna Instruments,
P parameters were discussed in terms of relative Bedfordshire, UK).
error in gradient retention coefficient,k*, which was All the chromatographic measurements were done
calculated after Snyder and Dolan [23]. at 358C with eluent flow-rate of 1 ml /min. The

injected sample volume was 20ml.

2 . Experimental 2 .2. Chemicals

2 .1. Equipment Methanol was from P.C. Odczynniki. Water was
prepared with a Milli-Q Water Purification System

Chromatographic measurements were made with (Millipore, Bedford, MA, USA).
an HPLC apparatus (Waters, Milford, MA, USA) The following test analytes (Table 1) were select-
equipped with a pump, variable-wavelength UV–Vis ed to derive model QSRR equations: benzamide,
detector, autosampler and thermostat. Data were indazole, benzonitrile, 2-naphthol, anisole, 1-naph-
collected using the WatersMILLENNIUM 2.15 software. thylacetonitrile, benzyl chloride, naphthalene, bi-
Supelcosil LC column, 15.030.46 cm I.D., particle phenyl, pyrene, 2,29-dinaphthyl ether, all from Lan-18

size 5mm (Supelco, Bellefonte, PA, USA), packed caster (Newgate, UK); indole and benzene, both
with octadecyl-bonded silica was employed. from P.C. Odczynniki; 4-cyanophenol from Aldrich

The mobile phase contained methanol and 100 (Gillingham, UK) and phenanthrene from Koch-
mM Tris buffer of pH 2.5 and 7.2 necessary for Light Labs. (Koinbrook, UK).
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Table 2
Experimental,t , and calculated gradient retention times,t , along with structural descriptors and the relative errors in gradient retention coefficient,k*, for the set ofR exp R calc

analytes employed to test the retention prediction potency of QSRR models derived for test analytes from Table 1 and described in Table 3. Linear gradient of methanol 10–90%
at t 510 minG

No. Analyte m d A log P t Eq. (4) (Table 3) Eq. (5) (Table 3) Eq. (6) (Table 3) Eq. (7) (Table 3)Min WAS R exp
2˚(D) (electron) (A ) (min)

ACD HYPERCHEM CLOGP t Relative t Relative t Relative t RelativeR calc R calc R calc R calc

error ink* error in k* error in k* error in k*

1 1-Bromonaphthalene 1.414 20.1540 340.71 4.22 3.84 4.18 12.75 11.28 0.27 12.29 0.12 12.35 0.11 12.33 0.11

2 Cumene 0.247 20.2057 322.15 3.56 3.24 3.57 12.37 11.49 0.18 11.49 0.18 11.47 0.18 11.59 0.17

3 n-Propylbenzene 0.336 20.2118 329.97 3.74 3.31 3.70 12.53 11.50 0.21 11.71 0.18 11.58 0.20 11.75 0.17

4 Anthracene 0.000 20.1267 379.15 4.68 4.05 4.49 13.01 13.21 0.08 12.84 0.06 12.66 0.11 12.71 0.10

5 n-Hexylbenzene 0.349 20.2106 421.46 4.80 4.10 4.76 13.79 13.01 0.26 12.98 0.27 12.73 0.32 13.03 0.26

6 n-Butylbenzene 0.341 20.2107 360.86 4.27 3.70 4.23 12.96 12.02 0.23 12.35 0.17 12.15 0.20 12.39 0.16

7 n-Amylbenzene 0.349 20.2107 391.43 5.34 4.50 5.29 13.36 12.51 0.24 13.63 0.13 13.31 0.02 13.68 0.15

8 2-Ethyltoluene 0.468 20.2106 323.11 3.67 3.38 3.62 12.48 11.30 0.22 11.63 0.18 11.68 0.17 11.65 0.18

9 1,3,5-Trimethylbenzene 0.000 20.1786 332.12 3.60 3.45 3.64 12.72 12.05 0.15 11.54 0.23 11.78 0.19 11.67 0.21

10 1,2,3-Trimethylbenzene 0.48720.1807 319.85 3.60 3.45 3.54 12.56 11.45 0.21 11.54 0.20 11.78 0.17 11.55 0.20

11 1-Methylnaphthalene 0.274 20.1811 335.17 3.91 3.52 3.81 12.51 11.87 0.15 11.91 0.14 11.88 0.15 11.88 0.15

12 o-Xylene 0.437 20.1804 297.13 3.14 2.98 3.09 12.00 11.12 0.16 10.99 0.18 11.10 0.17 11.00 0.18

13 m-Xylene 0.258 20.1790 302.97 3.14 2.98 3.14 12.11 11.36 0.15 10.99 0.20 11.10 0.19 11.06 0.19

14 p-Xylene 0.000 20.1780 303.57 3.14 2.98 3.14 12.13 11.58 0.12 10.99 0.20 11.10 0.19 11.06 0.19

15 3-Cyanobenzoic acid 3.907 20.3554 322.24 1.48 1.78 1.55 8.32 7.54 0.17 9.00 0.25 9.35 0.44 9.13 0.32

16 3-Fluorobenzoic acid 2.759 20.3568 293.89 2.16 1.88 2.13 9.49 7.95 0.23 9.81 0.09 9.49 0.00 9.84 0.10

17 o-Toluic acid 2.077 20.3695 308.71 2.35 2.21 2.38 9.89 8.62 0.23 10.04 0.05 9.97 0.02 10.14 0.08

18 p-Toluic acid 2.809 20.3670 316.80 2.35 2.21 2.38 10.05 8.21 0.29 10.04 0.00 9.97 0.02 10.14 0.03

19 4-Ethylbenzoic acid 2.889 20.3672 343.94 2.89 2.61 2.91 10.77 8.59 0.36 10.69 0.03 10.56 0.07 10.78 0.01

20 3-Hydroxybenzoic acid 3.496 20.3584 299.84 1.50 1.46 1.56 7.44 7.46 0.01 9.02 0.68 8.88 0.58 9.14 0.77

21 4-Hydroxybenzoic acid 3.010 20.3682 300.43 1.42 1.46 1.56 6.80 7.77 0.36 8.93 1.25 8.88 1.20 9.14 1.52

22 Benzoic acid 2.418 20.3651 287.97 1.89 1.75 1.88 9.20 8.05 0.19 9.49 0.08 9.30 0.03 9.53 0.09

23 1-Naphthylacetic acid 2.028 20.3742 376.83 3.13 2.68 2.59 10.45 9.75 0.22 10.98 0.29 10.66 0.10 10.40 0.02

24 Acetylsalicylic acid 5.816 20.3321 353.76 1.19 1.24 1.02 8.53 6.76 0.31 8.65 0.04 8.56 0.01 8.49 0.01

25 Naproxen 2.346 20.3584 446.68 3.00 2.99 2.82 11.01 10.77 0.14 10.82 0.12 11.11 0.07 10.68 0.19
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26 Ketoprofen 2.779 20.3581 481.35 2.81 3.46 2.76 10.75 11.01 0.29 10.59 0.13 11.80 2.13 10.60 0.12

27 Fenbufen 4.028 20.3584 490.29 2.93 2.83 3.14 11.17 10.19 0.57 10.74 0.35 10.88 0.26 11.06 0.11

28 Diclofenac 1.783 20.3754 462.21 3.28 3.97 4.32 11.87 11.34 0.30 11.16 0.36 12.54 0.78 12.50 0.71

29 2-Chloroaniline 1.676 20.4010 284.98 1.91 1.78 1.91 9.31 8.30 0.17 9.51 0.05 9.35 0.01 9.57 0.07

30 2-Methoxyaniline 0.802 20.4035 306.41 1.09 1.01 1.18 9.12 9.31 0.06 8.53 0.14 8.22 0.19 8.68 0.11

31 3,4-Dichloroaniline 3.707 20.4025 309.72 2.51 2.30 2.59 10.19 7.13 0.31 10.23 0.01 10.10 0.02 10.40 0.05

32 3,5-Dichloroaniline 2.989 20.4026 312.41 2.70 2.30 2.71 10.72 7.73 0.34 10.46 0.07 10.10 0.14 10.54 0.05

33 3,5-Dimethylaniline 1.274 20.4137 322.95 1.86 2.20 1.91 9.76 9.14 0.15 9.45 0.09 9.96 0.07 9.57 0.06

34 3-Chloroaniline 2.603 20.4073 288.71 1.81 1.78 1.91 9.17 7.60 0.22 9.39 0.05 9.35 0.04 9.57 0.10

35 3-Methylaniline 1.469 20.4131 293.50 1.40 1.73 1.41 8.67 8.51 0.04 8.90 0.06 9.27 0.19 8.96 0.08

36 4-Chloroaniline 3.086 20.4066 289.22 1.76 1.78 1.91 9.09 7.24 0.23 9.33 0.06 9.35 0.06 9.57 0.12

37 N-Ethylaniline 1.867 20.3605 327.54 2.13 1.96 2.17 10.16 9.16 0.22 9.78 0.11 9.61 0.14 9.89 0.08

38 4-Methoxyaniline 1.966 20.4157 309.35 0.74 1.01 1.00 7.17 8.37 0.55 8.11 0.39 8.22 0.46 8.46 0.62

39 Coumarin 4.818 20.28799 310.80 1.39 1.82 1.41 8.69 7.15 0.23 8.89 0.05 9.41 0.22 8.96 0.07

40 Phthalimide 3.348 20.40254 306.23 1.15 1.22 1.15 7.73 7.35 0.08 8.60 0.30 8.53 0.27 8.65 0.32

41 Phthalonitrile 5.298 20.1134 308.61 1.25 2.12 1.01 7.79 8.06 0.08 8.72 0.35 9.84 1.22 8.48 0.23

42 1,4-Naphthoquinone 1.332 20.2698 324.50 1.79 1.04 1.93 9.49 10.21 0.29 9.37 0.03 8.27 0.24 9.59 0.03

43 Phenylacetylene 0.257 20.1964 290.81 2.40 2.23 2.41 10.67 11.03 0.10 10.10 0.11 10.00 0.13 10.18 0.10

44 Carbazole 1.206 20.2449 361.17 2.67 2.94 3.52 11.23 11.10 0.05 10.43 0.21 11.04 0.06 11.53 0.12

45 9,10-Anthraquinone 0.003 20.2863 388.67 2.44 2.44 2.62 11.84 12.17 0.16 10.15 0.36 10.31 0.34 10.43 0.33

46 Xanthene 1.146 20.1523 376.35 3.93 3.51 4.40 12.83 12.09 0.21 11.94 0.23 11.87 0.25 12.60 0.08

47 Hexachlorobutadiene 0.00020.0730 340.60 3.98 2.61 4.90 13.12 12.98 0.04 12.00 0.22 10.56 0.33 13.20 0.03

Mean 0.21 Mean 0.19 Mean 0.27 Mean 0.19
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The following analytes (Table 2) were used to test calculations according to the semiempirical AM1
the retention prediction potency of the model QSRR method [24,25]. The logP values were calculated
equations: 1-bromonaphthalene, cumene,n-propyl- with use of the following softwares:ACD, HYPERCHEM

benzene, anthracene,n-butylbenzene, n-amylben- with the extensionCHEMPLUS andCLOGP. The structur-
zene, 2-ethyltoluene, 1,3,5-trimethylbenzene, 1,2,3- al descriptors for the QSRR model analytes are
trimethylbenzene, 1-methylnaphthalene,o-xylene,m- collected in Table 1 and for the test analytes the
xylene, o-toluic acid, p-toluic acid, 4-ethylbenzoic respective data are in Table 2.
acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid,
1-naphthylacetic acid, phenylacetylene, carbazole, 2 .5. QSRR analysis
xanthene, 9,10-anthraquinone, hexachlorobutadiene,
1,4-naphthoquinone, coumarin, phthalimide,

2 .5.1. Multiple regression analysisphthalonitrile, all from Lancaster (Newgate, UK);
Multiple regression analysis equations were de-3-cyanobenzoic acid, 3-fluorobenzoic acid, 2-chloro-

rived employing Microsoft EXCEL software (Mi-aniline, 3,4-dichloroaniline, 3,5-dichloroaniline, 3,5-
crosoft, Redmond, WA, USA) run on a personaldimethylaniline, 3-chloroaniline, 3-methylaniline, 4-
computer. Regression coefficients (6standard devia-chloroaniline, N-ethylaniline, 4-methoxyaniline, all
tions), multiple correlation coefficients,R, standardobtained from LC Resources (Walnut Creek, CA,
errors of estimate,s, significance levels of each termUSA); n-hexylbenzene from Aldrich;p-xylene from
and of the whole equations,P, and values of theRomil (Shepshed, UK); benzoic acid from Merck
F-test of significance, (F ) were calculated and are(Darmstadt, Germany); 2-methoxyaniline from P.C.
reported in Table 3.Odczynniki; acetylsalicylic acid, diclofenac, keto-

To derive model QSRR equations to be used forprofen, fenbufen, naproxen, all from the drug and
retention predictions, gradient retention times,t ,R expreagent collection of the Medical University of
for analytes from Table 1 were regressed against the˜ ˜Gdansk (Gdansk, Poland).
three structural descriptors obtained from molecular
modeling: total dipole moment,m, electron excess2 .3. Determination of retention parameters for
charge of the most negatively charged atom,d ,MinQSRR studies
and water-accessible molecular surface area,A ,WAS

and against individual logP values calculated by theGradient retention times,t , of the modelR exp
three softwares studied. The resulting QSRR equa-series of analytes from Table 1 were measured on
tions [Eqs. (4)–(7)], characterizing the HPLC systemSupelcosil LC column washed with linear gradient18
studied, are collected in Table 3.of 10–90% of methanol at gradient time,t , of 10G

In Table 2 the relative errors in gradient retentionmin. The data from these gradient experiments were
coefficients,k*, are given to quantify the predictionused to derive model QSRRs.
potency of the QSRR models here derived. The
calculations of the errors were done according to the2 .4. Structural descriptors of analytes
following equation [23]:

Molecular structure descriptors of the analytes relative error ink* 5 (t /2.3b)(dk /k) (3)0
which were employed in QSRR analysis, i.e. total
dipole moment,m, electron excess charge of the where t is dead time, b is gradient steepness0

most negatively charged atom,d , and water-ac- parameter,dk is the absolute difference between theMin

cessible molecular surface area,A , were calcu- experimental and the calculated gradient retentionWAS

lated by standard molecular modeling. TheHYPER- coefficient, k is the experimental gradient retention
CHEM program for personal computers with the coefficient.
extensionCHEMPLUS was used for the calculations of To illustrate the gradient retention prediction
these parameters. The software performed geometrycapabilities of the QSRR models specified in Table 3
optimization by the molecular mechanics MM1 the respective experimentalt data are plottedR

force field method followed by quantum chemical against the calculated ones in Fig. 1.
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Table 3
Coefficientsk –k (6standard deviations) with their significance levels,P, and statistical parameters,R, s, F andP, of regression equations1 4

of the forms:t 5 k 1 k m 1 k d 1 k A , and t 5 k 1 k log P, respectively, for the series of analytes from Table 1 employed toR 1 2 3 Min 4 WAS R 1 2

derive the QSRR models studied

k k k k R s F P Eq. no.1 2 3 4

QSRR based on analyte descriptors from molecular modeling
7.9076 (60.6208) 20.7723 (60.0918) 7.5117 (61.4875) 0.0165 (60.0016) 0.9870 0.3727 138 5E209 (4)

(P54E206) (P50.0004) (P55E207)

QSRR based on logP from ACD

7.2209 (60.4580) 1.2005 (60.1382) – – 0.9236 0.8170 75 9E207 (5)
(P59E207)

QSRR based on logP from HYPERCHEM

6.7529 (60.6039) 1.4574 (60.2011) – – 0.8953 0.9493 53 6E206 (6)
(P56E206)

QSRR based on logP from CLOGP

7.2476 (60.4517) 1.2156 (60.1420) – – 0.9216 0.8271 73 1E206 (7)
(P51E206)

Fig. 1. Correlations between the calculated from individual QSRR models and the experimental gradient retention times for a set of test
analytes from Table 2: (a) model based on total dipole moment, electron excess charge of the most negatively charged atom and
water-accessible molecular surface area as the structural descriptors, (b) model based on logP values calculated with use ofACD software,
(c) model based on logP values calculated with use ofHYPERCHEM software, (d) model based on logP values calculated with use ofCLOGP

software.
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3 . Results and discussion with linear gradient 10–90% of methanol at gradient
time t 510 min. As seen from Table 2 the presentG

3 .1. QSRR equations characterizing the HPLC QSRR molecular modeling approach gives mean
column studied relative error in prediction ofk* of 19–27%. It is

assumed that to be practically useful for optimizing
The model QSRR equation relatingt of the resolution, the errors ink* should be no greater thanR

training set of analytes to their total dipole moment, about 5% [23]. Therefore, the retention predictions
electron excess charge of the most negatively obtained by the approaches here discussed may only
charged atom and water-accessible molecular surface be treated as a first approximation, which is still
area is of excellent statistical quality [Eq. (4) in better than just a guess.
Table 3]. All the coefficients at the three parameters The relative errors calculated according to Snyder
are statistically significant (P#0.0004) as is the and Dolan [23] are generally larger than convention-
whole equation (P55E209). Multiple correlation al errors defined as (Dk /k) ? 100.
coefficient (R50.9870), standard error of estimate Gradient retention data predicted by logP values
(s 5 0.3727), and the value of theF-test of signifi- derived by means of three computer programs (ACD,
cance (F5138), are all very good. HYPERCHEM and CLOGP) differ. Fig. 1b demonstrates

Statistically significant QSRR equations were also the predictions based on logP values obtained with
found to describe gradient retention in terms of the the use ofACD software. These predictions appear
log P values calculated with the use of theACD, better (R50.9443) than those resulting from the
HYPERCHEM and CLOGP computer programs (Eqs. (5)– molecular modeling-based QSRR (Fig. 1a,R5
(7) in Table 3). The coefficients at the logP 0.8913). On the other hand, the error of prediction
parameters are at the level ofP#1E206 in the case expressed as the absolute relative error ink* (Table
of all the three equations derived. Correlation co- 2) is very similar in case of Eq. (4) and both the Eqs.
efficients, R, are for all the three equations lower (5) and (7), its mean being 21, 19 and 19%,
than for Eq. (4) as are the values of theF-test of respectively.
significance,F; higher are the standard errors of The predictions based on logP values obtained
estimate,s. The best QSRR equation obtained with withHYPERCHEM [Eq. (6)] are less accurate than those
use of log P values was that calculated with the provided by Eqs. (4), (5) and (7), however. Also, in
parameters provided by theACD software (R5 the case of Eq. (6) the correlation (R50.8944)
0.9236). Nearly the same quality possesses the between the calculated and the experimental gradient
QSRR equation relatingt to log P derived byCLOGP retention times is lower and comparable to theR

software (R50.9216). Of evidently lower quality correlation (R50.8913) observed for the data ob-
was the equation employing logP values obtained served and predicted by Eq. (4). The mean relative
by means of theHYPERCHEM software (R50.8953). error ink* produced by Eq. (6) is larger (27%) than

that resulting from application of Eqs. (4), (5) and
3 .2. Testing of retention prediction potency of the (7).
derived QSRR models Predictions based on logP values calculated with

the use ofCLOGP software are comparable to those
In Table 2 the retention parameters calculated by achieved with the use ofACD software. In the former

means of Eqs. (4)–(7) and the experimental gradient case, the correlation between the calculated and the
retention times are collected for a large test series of experimental gradient retention times is described by
structurally diverse analytes, which had not been R50.9391. The mean relative error ink* (19%) is
used to derive the QSRR models. Goodness of like in the case of theACD-derived logP.
predictions is illustrated in Fig. 1.

Standard deviations in the predicted gradient
retention times were converted into relative errors in 4 . Conclusions
the gradient retention coefficientk*. These errors are
listed in Table 2 for a series of 47 test analytes Results of present study provide additional evi-
chromatographed on the Supelcosil LC column dence to our hypothesis [7] that QSRRs combined18
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with the LSS model allow for approximate prediction ture in a reliable manner is still lacking. Further
of gradient reversed-phase HPLC retention time of efforts should hence be encouraged in the area of
any analyte on a once characterized column. In- theoretical chemistry and molecular modeling that
formation that can guide further optimization of the would result in better means of characterization of
analytical procedure can thus be obtained. Gradient chemical entities and consequently, in more reliable
experiments carried out for a relatively short series predictions of their properties. QSRRs offer a unique
of 15 model analytes serve to derive model QSRR tool to test the performance of new theoretical
equations. These equations, once established for a concepts and calculation procedures.
given column/eluent system, are next used to evalu-
ate retention parameters for any analyte of a known
molecular structure to be chromatographed in the
given HPLC system. Consequently, the starting R eferences
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